Data Science and Agility At Springer Nature

Charles Kubicek

Agile on the Beach 2024

Charles

Software Engineer 20+ years

10 years agile and digital transformation

Worked with data for a few years now

Talk Overview:

- Data Challenges
- Shift-Left
- Data-as-a-product
- Delivery

Scope:

Data Science Output
An answer
A tool

A model

Scope:

Data Science Output An answer

- A tool
- A model

- A deliverable deployed into a production environment

Charles Kubicek @ckubicek

Challenges

Hidden raw data hand-off
Data inconsistency
Production hand-off

Challenge 1

Hidden data hand-off

Charles Kubicek @ckubicek

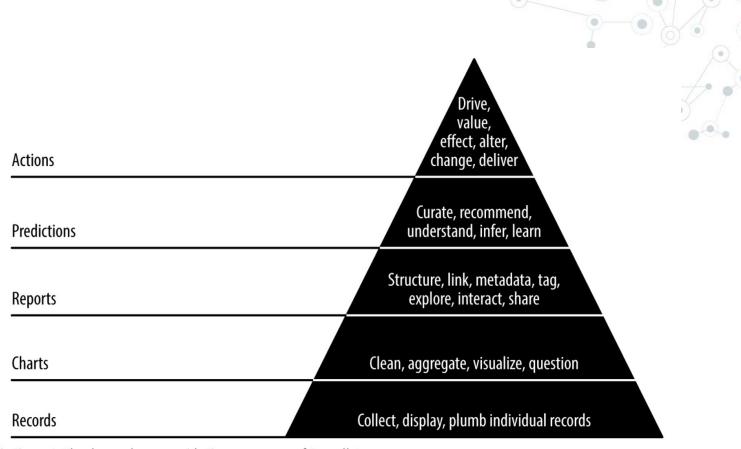


Figure 1. The data-value pyramid. Figure courtesy of Russell Jurney.

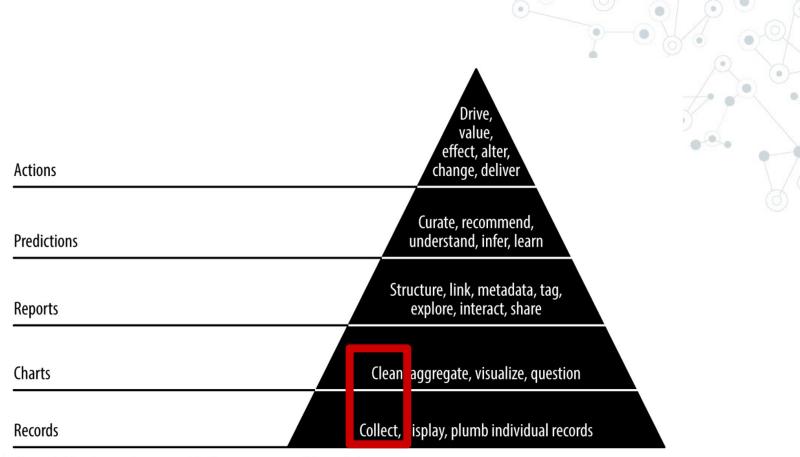


Figure 1. The data-value pyramid. Figure courtesy of Russell Jurney.

O effort data export, but it is a hand-off

O effort data export, but it is a hand-off

Olean rubbish?

O effort data export, but it is a hand-off

Olean rubbish?

Fine for experimentation but not production data

- O effort data export, but it is a hand-off
- Olean rubbish?
- Fine for experimentation but not production data

Connect to data instead

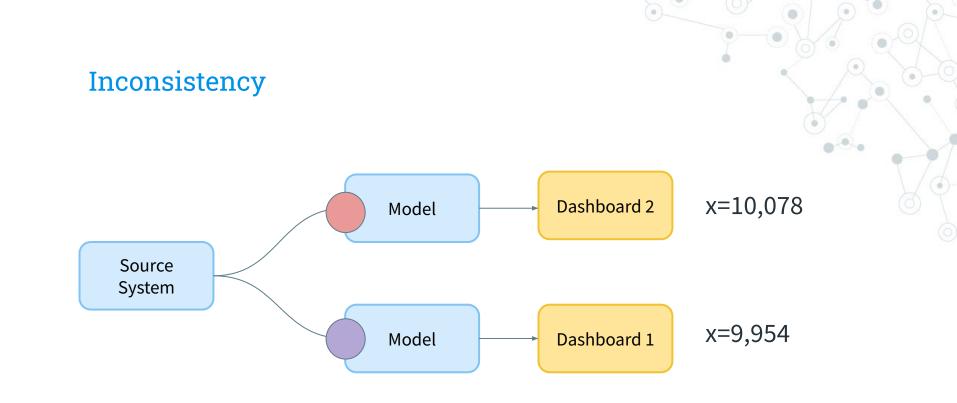
Challenge 2

Data Inconsistency

Charles Kubicek @ckubicek 17

Cleaning

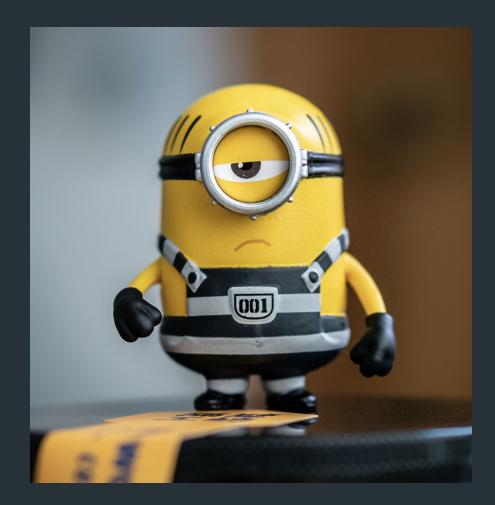
Filtering
Formatting
Converting
De-duplicating
Removing outliers
Correcting



Challenge 3

Production hand-off

The Data science process is like scientists creating a vaccine in a lab, they **hand-off** to manufacturing to scale up and deliver



Triggers:

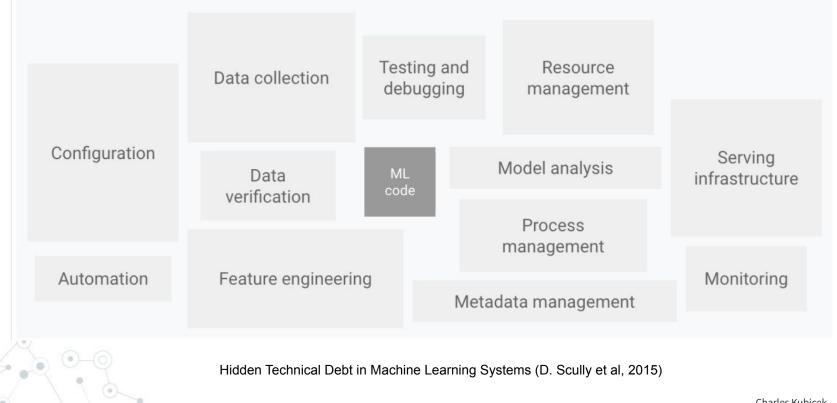
O Assumes software works as hardware

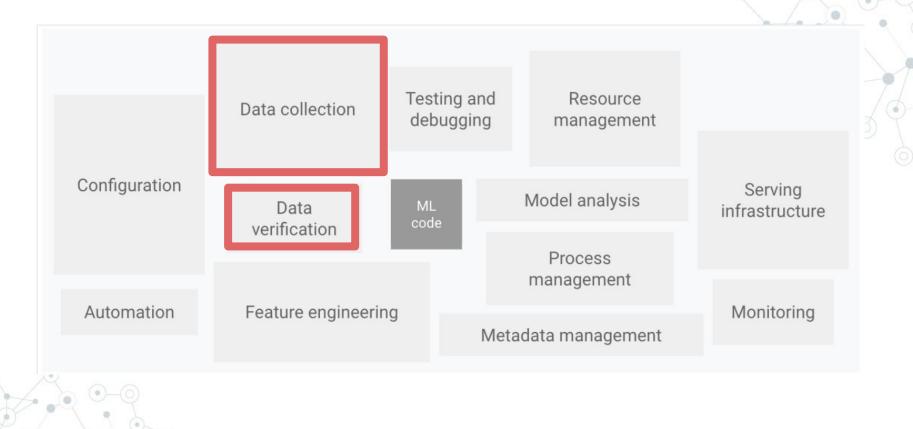
Triggers:

Assumes software works as hardware

Scaling ML models is as hard as developing them

Hidden technical debt in Machine learning systems





Production Hand off:

Too soon in the development phase

Not enough context

Lots of data work still to be done

Challenges - Summary

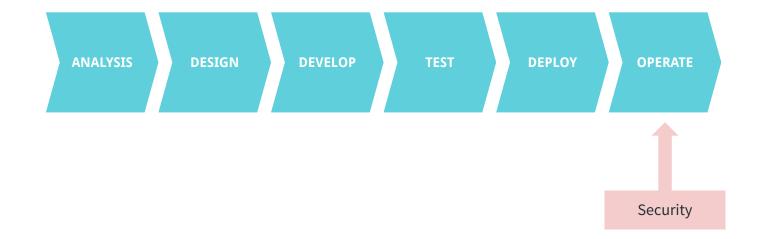
Hidden raw data hand-off
Data inconsistency
Production hand-off

What might a software vaccine look like?

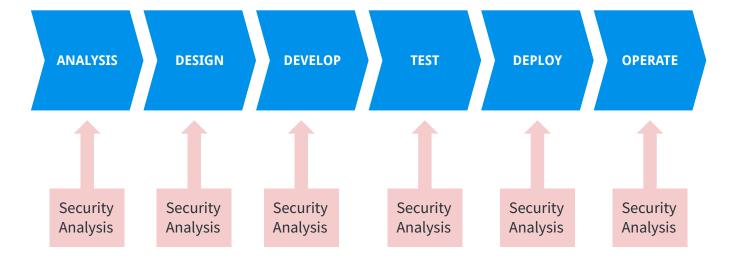
What might a software vaccine look like?

Protection against viruses?

Security V1



Dev-Sec-Ops

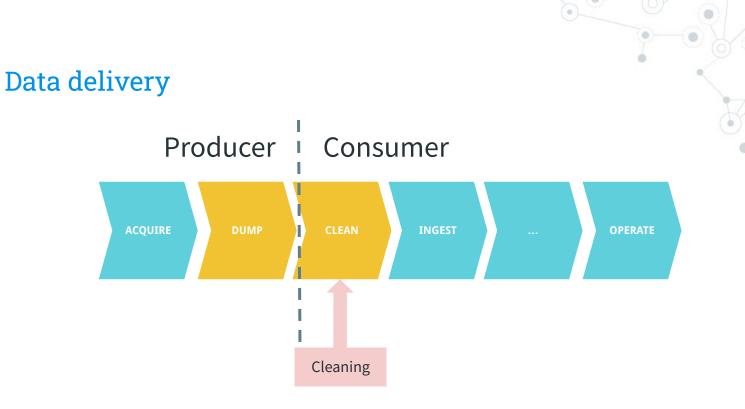


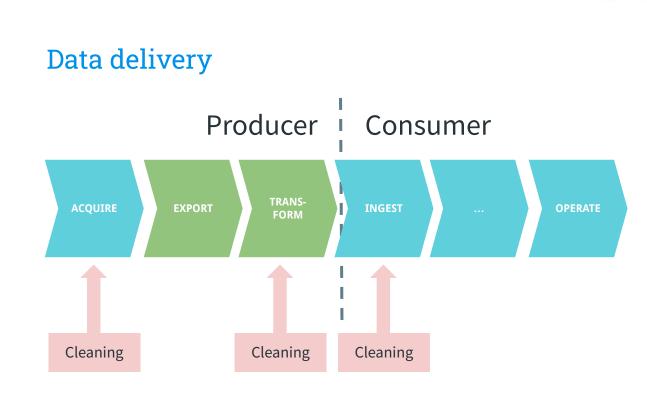
Shift-Left

implementing a process, or using a tool as early as possible in the development chain

Shift Left

What does shift-left for data look like?





Data as a Product

5

Charles Kubicek @ckubicek **39**

Data as a Product

Standalone data designed **for data consumers**

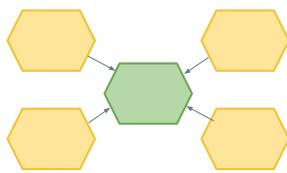
- Discoverable
- Well Described
- Interoperable
- Secure
- Trustworthy

Photo by <u>RoseBox رز باکس</u> on <u>Unsplash</u>

Data as a Product

Published on an analytical data platform

- Owned appropriately
- Standards
- Data contracts
- Quality-observed
- Usage monitored



Data Products

The data-generating team* transforms data for use

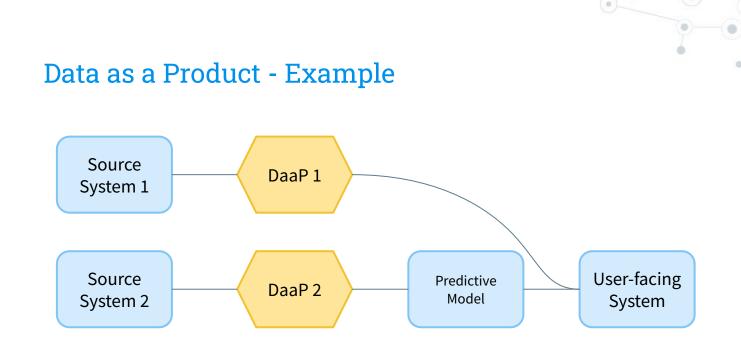
Why? Because they:

- Acquired the data
- Understand nuances
- Have existing processes
- Care how data is used elsewhere

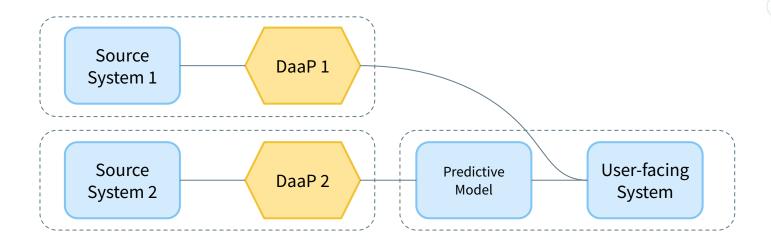
Data Products - Network effects

The more consumers;

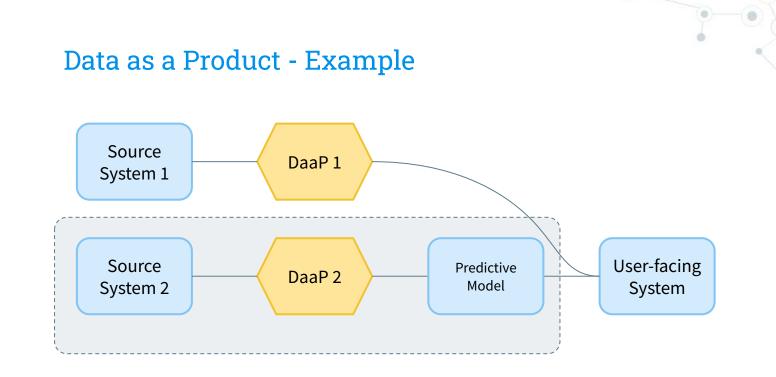
- the better the data gets
- The more trustworthy the data becomes
- The more consumers use it
- Fewer duplicates exist
- More consumers there are

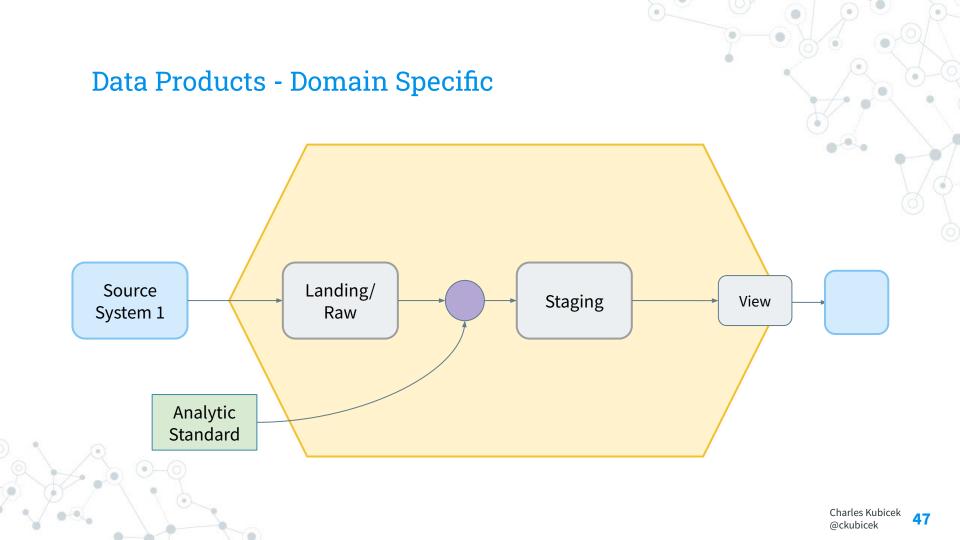


Data as a Product - Ownership Boundary

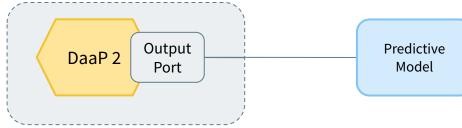


Charles Kubicek **45**



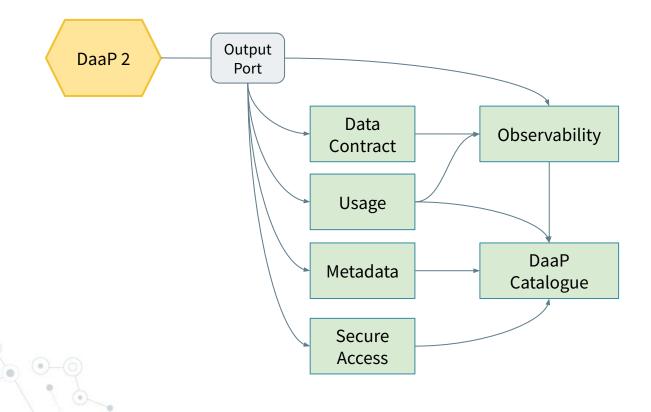


Data Products - Multi-faceted



Charles Kubicek **48** @ckubicek

Data Products - Multi-faceted



Charles Kubicek **49**

Opposite of a Data Dump

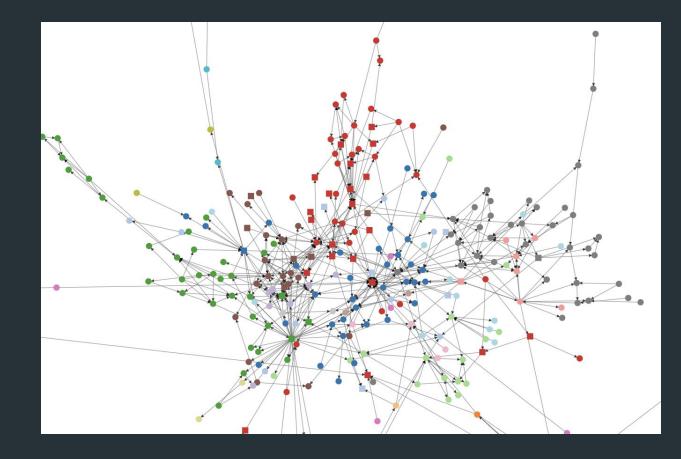
Charles Kubicek @ckubicek

51

Storytelling with data

 Data product development is abstract and not as visible as app development

 Need to craft our own narrative with real data to demonstrate

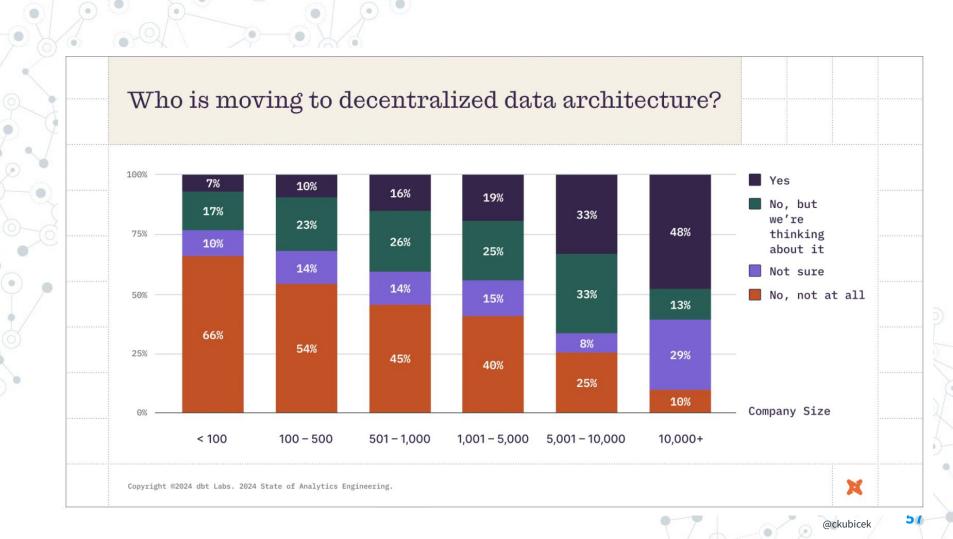


Charles Kubicek 55 @ckubicek Data Team Topologies

- Product teams delivering DaaP

- DaaP teams
 - With Data scientists

- Domain data teams
 - Delivering DaaP on behalf of product teams



Data as a product - Summary

Data as a product for reliable data connectivity

Teams close to the source transform data

Trust in data increases

Charles Kubicek 59 @ckubicek

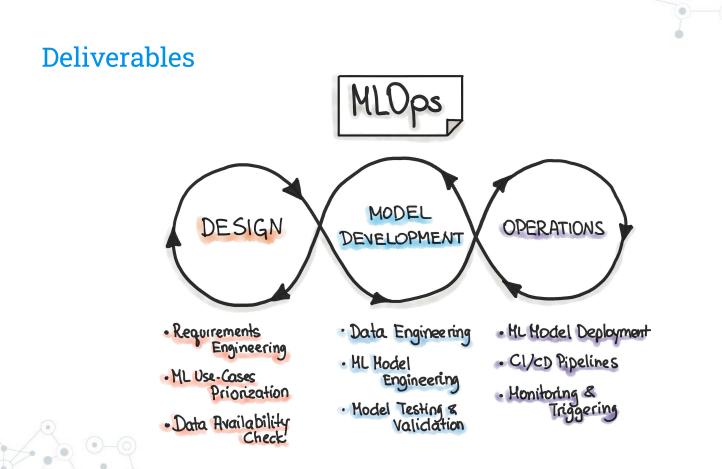
Deliverables

Notebooks
Serialised ML models
ML models as APIs

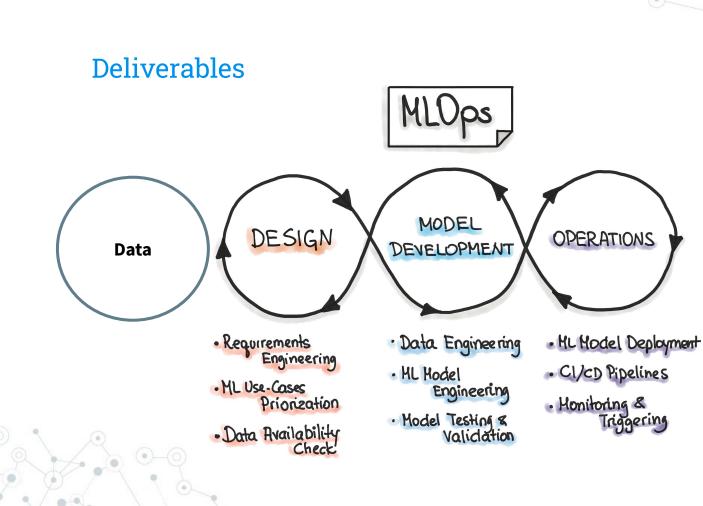
Deliverables

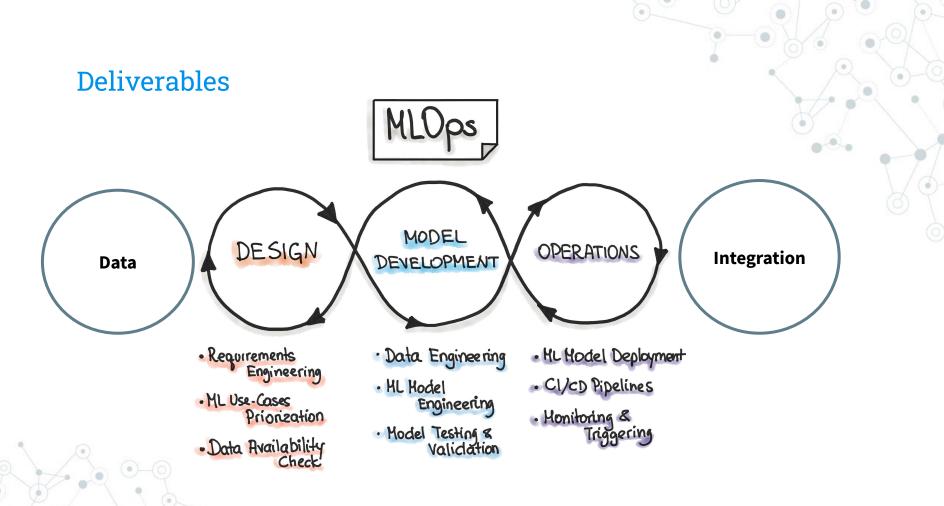
Notebooks
Serialised ML models
ML models as APIs

Notebooks are for discovery and examples Model deployment needs to be part of an automatic, reproducible process



https://ml-ops.org/content/mlops-principles

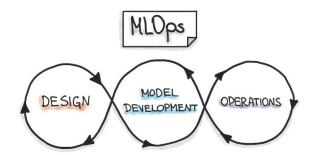




Charles Kubicek @ckubicek 64 Deliverables

Challenging Hand-off

- Which operations environment?
- Unpredictable costs when scaling
 - PoC models may become unviable
- Not the only option...



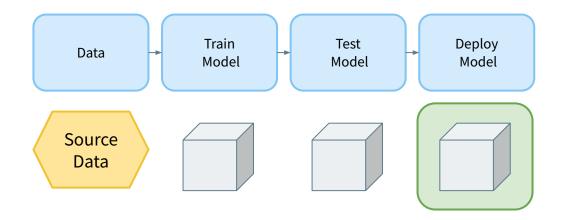
Data API principles

Minimise work at request time; Maximise work at ingestion

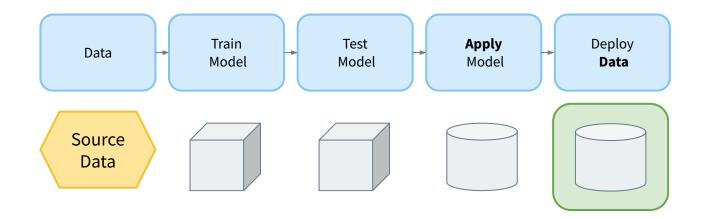
- Fast
- Simple
- Resilient
- Reduced Compute
- Failures handled in advance

What can we pre-compute?

Model deployment



Model deployment



68

Delivery Summary

Not every problem needs real-time ML

Move compute to the left if possible

Takeaways

Make each data hand-off part of the process and make each hand off fully visible to all teams involved

Ensure key metrics are calculated once, as close to the data source as possible

Treat data-as-a-product to shift data responsibilities to
the most effective point in the data supply chain

Takeaways

We can treat a delivery process like science experiments

Charles Kubicek 71 @ckubicek

Data Science and Agility At Springer Nature

Charles Kubicek

Agile on the Beach 2024

