
Security from Zero

Agile on the Beach 2024

Eleanor Saitta
Systems Structure Ltd.

Part One: Thinking

Systems exist to do things in the world

To be useful, they need to have certain emergent
properties

Whole-system properties which occur in a specific
context

These require unified effort to deliver

What is a System?

• Correctness

• Performance

• Efficiency

• Reliability

• Observability

• Security

• Resilience

Properties you care about:

A secure system is one that:

• Enables a chosen set of people to predictably
accomplish specific goals

• Does so in the face of actions by a chosen set
of adversaries

• Predictably prevents that chosen set of
adversaries from

What is Security?

The ability of a system to deal with unforeseen
modes of failure without complete failure

Resilience is a property of humans, not code

What is Resilience?

Designing both processes and technical systems
in accordance with specific principles leads to
desired emergent properties

Properties of technical artifacts vs. properties of
human processes

Designing for Resilient Security

A few useful system design principles:

• Statelessness/Logiclessness

• Immutability and Ephemerality

• Canonical Stores

• Kill Bug Classes

• Segmentation

Component Principles

Services should either do computation or hold
state, not both

Complex components are unpredictable

State and Logic

Data, configuration, and memory are all state

Immutable systems eliminate unnecessary state

Respinning a cluster resets state

Immutability and Ephemerality

Every piece of state should exist canonically in
exactly one place

As few systems as possible should be stores of
state

Any duplicated state must be validated

Minimal, Canonical State

Mitigations Always Fail

Kill Bug Classes
Security engineering changes
that don’t involve killing bug
classes are emergency response
work

…unless those changes kill
traversal instead

Make a plan for each class and
layer in advance and crosscheck

Segment All The Things!
After a compromise, the adversary still needs to reach their target

• Horizontally between systems/instances/environments
 Event busses, service meshes, service-level firewalls,

 per-instance creds
• Vertically within a system

 Least privilege, AppArmor, traditional hardening
• Temporally across execution lifetimes

 Credential dropping, ephemeral workers, short-lived secrets
• Across the lifecycle from supply chain to dev to prod

And a few for the human side of the org:

• Declare and Generate

• Design for Failure and Error

• Decide at the Edge

• Slack

Process Principles

Declarative configurations are easier for both
humans and computers to create, compose, and
validate

Use memory safe languages, parser generators,
strongly typed languages, state machine
generators, and declarative IaC languages

Declare, don’t Program

Compromise is Inevitable

Something will eventually fail
Some machine will eventually get owned

Design systems to handle predictable and unpredictable failures

Think about controls as a whole
 Assuming some layer will always fail

Build the system you’d like to have during a compromise or outage

Make risk events visible

Design for Failure

Design for Human Error

Your staff (and users) click on things for a living
The cannot do their jobs without clicking on stuff, quickly

Do not try to yell^Wcajole^Wtrain them out of this

Make clicking on things safe:
• U2F and WebAuthN (Yubikeys) solve phishing
• Burn Word, Excel, and Acrobat out of your company like it’s

poison

If you can’t, consider goat farming
The goats will still screw up, but it’s funnier

Design for Human Error

Empower teams and engineers to work
autonomously, so decisions can happen where
people have full context

Focus on coordination and communication over
control

Ensure teams have thick horizontal relationships
outside of formal processes

Decentralize Decisionmaking

Resilience requires teams to have downtime

Improving any emergent property takes more
time than the bare minimum

Apply hard caps to feature velocity, ensure
people take vacations, have large on-call
rotations, and track out of hours work

Slack

Part Two: Doing

Scope
• The software you write and your production infrastructure

• Your laptop fleet and IT systems

• All the “cloud stuff” you use, especially bits you’ve forgotten

• The tools your employees use to get work done

• Your products & services, from the customer’s perspective

• How you run your operations

For your product:

• Think about risks for users and the company early

• Make smart language and framework choices

• Let someone else do hard stuff like auth

• Pay attention to where data goes — maximal
privacy is cheaper

Make sure it’s a real product before going further

When to Start

For your company:

• Make it real first

• Not pre-A or before ~10 technical staff

• Do start pre-B

• Keep SaaS systems simple until you start

When to Start

1. Hire at least one each ops and IT engineer

2. Make sure you have for-real tested backups

3. Easy SaaS tools on SSO; Yubikeys for 2FA

4. Get rid of your Office and Windows footprint

5. Laptop fleet management (e.g. Jamf)

6. Thinkst Canaries in your VPCs/network

7. Basic log centralization

Seven Immediate Actions

If the C[EFOT]O isn’t on board it won’t work

Someone has to own security
Not the CTO; ideally a peer

Probably fractional for the first 3 years

Finish your vegetables

Think about your incentives

Qualitative metrics, not quantitative

Include maintenance when costing SaaS tools

Governance

Getting Work Done
Security work will sometimes need to delay product work
 If it doesn’t, you won’t have secure products

Your planning process is security critical

Segment high-importance, low-urgency work from urgent work
Make qualitative decisions and plan beyond single quarters
Get better at cross-team coordination — security needs a lot of it
Build decision-making/execution capacity on technical arch.
Unify working processes and tools across teams

Productive Team Relationships

Security’s job is not to say no to things

Make friends — rotations are great once you’re staffed up
If you have an office, have free candy
Hire for social and comms skills as much as technical ones

Security will need everyone else to do a lot of extra work
Make sure the security team can give back directly
Do not make the security team do all the work

Productive Team Relationships

Compliance

Compliance regimes give useful incentives and useless guidance
Compliance doesn’t get to design technical architecture

Security makes rules to satisfy business needs and technical reality
Compliance figures out how to map them to regulations

This isn’t about dodging compliance duties, it’s about satisfying
them in ways that help real-world outcomes

Security compliance must report to the CISO

Compliance

Risk is a Lie

Risk is a Lie
Do you know your adversaries personally?
Do you have enough of them that you can conduct
meaningful statistical analysis on their behavior?

If not, you have exposure, not risk

Exposure and cost structures satisfice for decision support,
but most useful metrics will be qualitative, not quantitative

Make sure your team agrees on exposure tolerance

You need to log a lot of stuff somewhere

It will cost money

Average time to detection is 210 days

You need someone to look at the logs

Hiring them will cost even more; outsource

ML cannot replace a good engineer

You can’t review what wasn’t logged to track down the entry point
for a breach or what was accessed

Detection

Capability is a Liability

You spend lines of code to buy features

Every line of code is an ongoing cost

Is your feature worth it?

Tools that let humans write less code are good*

Every tool and library is also an ongoing cost

Velocity averages out; technical debt is drag

Most security debt is dark

Code is Not an Asset

You probably don’t know what JS runs on your site

Advertising = Malware

Post-spectre web — CSPs, CORP/COOP/CORB

Backend integrations are easier to control

Beware GraphQL

The Front End

You also don’t know what runs on your backend

Need to be able to reproduce point in time

Let someone else figure out a library was backdoored
first

Artifact management with configuration in git and
logged deploys

The Supply Chain

Red team reviews are for testing incident response if
you already understand your environment

Full access “grey box” testing with source and prod-like
access

Early test on an MVP once you frameworks are set

Retest high-risk components or new approaches

Audits

Solutions to Avoid

There’s a lot of snake oil out there
Do not let the CTO buy things he sees in airports

Good security tooling rarely replaces skilled engineers

Black boxes are rarely useful
Exceptions: spam filters, DDoS protection via your CDN
Not an exception: Antivirus systems

Favor systems that work like the internet, and that get integrated
into your engineering processes

Solutions to Avoid

You get to design your attacker’s motivation level and the
problems they have to solve

Spend as much time designing unhappy paths as happy ones

Know where each automated business or security decision in your
flows

Document this before each sprint and check it after

If your product means you have to deal with non-credit card
fraud, that’s a core competency

Product Security

You are responsible for the impact of your work
on people’s lives.

A domestic violence victim seeking an abortion

A trans teen not out at home

A union organizer

Personas to Examine

ella@structures.systems

Startup looking to get
serious about security?

Let’s talk.

Eleanor Saitta
Systems Structure Ltd.

	Security from Zero
	Part One: Thinking
	What is a System?
	Properties you care about:
	What is Security?
	What is Resilience?
	Designing for Resilient Security
	Component Principles
	State and Logic
	Immutability and Ephemerality
	Minimal, Canonical State
	Mitigations Always Fail
	Kill Bug Classes
	Segment All The Things!
	Process Principles
	Declare, don’t Program
	Compromise is Inevitable
	Design for Failure
	Design for Human Error
	Design for Human Error
	Decentralize Decisionmaking
	Slack
	Part Two: Doing
	Scope
	When to Start
	When to Start
	Seven Immediate Actions
	Governance
	Getting Work Done
	Productive Team Relationships
	Slide Number 31
	Compliance
	Slide Number 33
	Risk is a Lie
	Risk is a Lie
	Detection
	Capability is a Liability
	Code is Not an Asset
	The Front End
	The Supply Chain
	Audits
	Solutions to Avoid
	Solutions to Avoid
	Product Security
	Slide Number 45
	Personas to Examine
	Slide Number 47

