Security from Zero

Aglle on the Beach 2024

Fleanor Saitto
Systems Structure Lid.

.o

Part One: Tninking

Whnat is a System”?

Systerms exist 1o do things In the world

1o e useful, they need 1o have cerfain emergent
oroperties

Whole-system properties which occur in a specific
contfext

These reqguire unified effort 1o deliver

Properfies you care aoourt

« (Correctness « Opservabllity
« Performance « SECcurty
« LEfficiency « [Resllience

. Relicbility

Whnat is Security’?

A secure system is one that:

« ENnables a chosen set of people 1o predictaly
accomplish specific goals

« Does so In the face of actions by a chosen set
of adversaries

« Predictably prevents that chosen set of
adversaries from

What Is Resllience’”?

IThe abllity of a system 1o deal with unforeseen
mModes of fallure without complete failure

Resilience Is a property of hnumans, Not code

Designing for Resilient Security

Designing poth processes and tfechnical systems
N accordance with specific principles leads 1o
desired emergent properties

Properties of fechnical arfifacts vs. properties of
NUMAN ProCcesses

Component Principles

A few useful system design principles:
« Sfatelessness/Logiclessness

o [Immutabllity and Ephemerality

« Canonical Stores

« Kl Bug Classes

¢ Segmentation

oState and Logic

services should either do computation or hold
state, Nnot both

Complex components are unprediciable

Mmmutallity and Ephemerality

Data, configuration, and memory are all state
IMmmMutable systems eliminate unnecessary state

Respinning a cluster resets state

NMinimal, Canonical State

Cvery plece of stafte should exist canonically In

exactly one place

As few systems as possible should be stores of
state

ANy duplicated state must e validated

MiTigations Always rai

KIll Bug Classes

Security engineering changes
fthat don't involve killing bug
classes are emergency response
WOrk

~..unless those changes Kill
fraversal instead

Make a plan for each class and
layer In advance and crosscheck

segment All The Things!

Affer a compromise, the adversary still needs 1o reach thelr farget

Horizontally befween systems/instances/environments
Event busses, service meshes, service-level firewdlls,
oer-instance creds
Vertically within a system
Least privilege, AppArmor, fraditional hardening
Temporally across executfion lifetfimes
Credential dropping, ephemeral workers, short-lived secrefs
Across the lifecycle from supply chain o dev 1o prod

Process Principles

And a few for the human side of the org
« Declare and Generate
« Design for Failure and Error

« Decide at the Edge
¢ Slack

Declare, don't Program

Declarafive configurations are easier for oth
NuMAaNs aNd computers 1o credte, compose, anNd
validate

Use memory safe languages, parser generators,
stfrongly typed languages, state machine
generators, and declarative laC languages

Compromise is Inevitaple

TOUCHING WIRES CAUE'S

INSTANT DEATH
L. $200FINE 2.

® Newcastle Tramway Authority °

Design for Failure

sSomething will eventually fall
Some machine will eventually get owned

Design systems to handle predictable and unpredictable failures

Ihink about confrols as a whole
Assuming some layer will always fail

Bulld the system youd like 1o have during a compromise or outage

\ake risk events visible

Design for Human

Design for Human Error

Your staff (and users) click on things for a living
The cannot do their jobs without clicking on stuff, quickly

Do not 1ry fo yell"Wcajole”Wirain them out of this

Make clicking on things safe:

« U2F and WebAuthN (Yubikeys) solve phishing

« Burn Word, Excel, and Acrobat out of your company like 1t's
0OISON

f you can’t, consider goat farming
The goafts will still screw up, but it's funnier

Decentrdlize Decisionmaking

Crpower teams and engineers 1o work
autonomously, so decisions can happen where
oeople have full confext

FOCUS ON coordination and communicaTtion over
CONTro|

ENsure feams have thick nhorizontal relationsnips
oufside of formal processes

Slack

Resilience requires tfeams fo have downtime

IMproving any emergent property fakes more
fime than the bare minimum

Apply hard caps to feature velocity, ensure
oeople take vacations, have large on-cal
rofations, and frack out of hours work

Part lwo: Doing

SCOPE

» The soffware you write and your production infrasfructure
 Your laptop fleet and IT systems

« All the "cloud stuff” you use, especially bits you've forgotten
« [Ne fools your employees use o get work done

« YOUr products & services, from the customer’s perspective

« How you run your operations

When 1o Start

~Or yOour product:

« NNk albout risks for users and the company early
« Make smart longuage and framework choices

« Let someone else do hard stuff like auth

« Pay atfention to where data goes — maximal
orivacy Is cheaper

Make sure it's a real product before going further

When 1o Start

~Or your company:
« Make It real first

« Nof pre-A or before ~10 technical staff

» Do start pre-B

« Keep Saas systems simple until you start

seven Immeaiarte ACTions

Hire at least one each ops and [T engineer
\cke sure you have for-real tested backups

~N OO Ao

—Asy SAdsS ools on 550, Yubikeys for 2FA
Get rnd of your Office and Windows footprint
Laptop fleet management (e.g. Jamf)
Thinkst Canaries in your VPCs/network
BasiC log centralization

GCovernance

f the C[EFOT]O isnt on board it won't work

someone has 1o own security
Nof the CTO; idedlly a peer
Prolbbably fractional for the first 3 years

Finish your vegetables

Ihink albbout your incentives

Qualitative metrics, Not quantifative

INnclude maintenance when costing Saas 1ools

etting Work Done

Security work will sometimes need to delay product work
f It doesn't, you won't have secure products

Your planning process I1s security critical

Segment high-importance, low-urgency work from urgent work
Make gualitative decisions and plan beyond single quarters

et better at cross-team coordination — security needs a ot of if
Bulld decision-making/execution capdacity on fechnical arch.
Unify working processes and fools across teams

Productive Team Relationsnipos

Proauctive leam RelatioNnsnios

SECuUrity’s jo is Not 1o say No o ThiNgs

Make friends — rotafions are great once you're staffed up
f you have an office, have free candy
Hire for social and commes skills as much as fechnical ones

Security will need everyone else 1o do a lot of extra work
Make sure the security feam can give back directly
Do not make the security tfeam do all the work

Compliance
THIS IS TII[«l}IIHI'lIMI EDEPARTMENT

Compliance

Compliance regimes give useful incentives and useless guidance
Compliance doesn't get fo design fechnical architecture

Security makes rules fo safisfy business needs and technical reality
Compliance figures out how fo map them o regulations

This Isn't about dodging compliance dufies, it's about safisfying
them in ways that help real-world outcomes

Security compliance must report o the CISO

sk 1S O Lie

»

ﬁr
==l

THE RISK

i idTon

- L
&
*

¢4

oA

Jsk 1S O Lie

Do you know your adversaries persondlly?
Do you have enough of them that you can conduct
Meaningful stafistical analysis on their benavior?

f NOt, you have exposure, Noft risk

Exposure and cost structures safisfice for decision support,
out most useful metrics will be gualitative, not guantitafive

Make sure your feam agrees on exposure folerance

DetecTion

You need to log a lot of stuff somewhere

T will cost money

Average fime 1o detection is 210 days
You need someone to look at the logs
Hiring them will cost even more; outsource

ML cannot replace a good engineer

You can't review what wasn't logged fo frack down the entry point
for a breach or what was accessed

Capabllity 1s a Liability

gl L _-:Is:-".-m. .-- —

SIFAK-HET

Code 1s Not an Asset

You spend lines of code 1o buy features

cvery line of code Is an ongoing cost

s your feature worth it?

lools that let humans write less code are good™
Every fool and library is also an ongoiNg cost
Velocity averages out; technical debt Is drag

\Vost security debt is dark

ne Front ENd

You probably don't know what Js runs on your site
Advertising = Malware

Post-spectre wel — CSPs, CORP/COOP/COIRB

Backend infegrations are easier to conftrol

Beware GraphQll

The supply Chain

You also don't know wnat runs on your backenao
Need 1o be able 1o reproduce point In fime

Let someone else figure out a library was backdooredo
first

Arfifact management with configuration in git and
logged deploys

AUQAITS

Red feam reviews are for festing incident response |if
vou dlready understand your environment

Full access "grey box” testing with source and prod-ike
aCCess

Early fest on an MVP once you frameworks are seft

Retest Nigh-risk components or new approaches

olutions 1o Avolo

Solutions 1o Avold

There's a lof of snake oll out there
Do noft let the CTO buy things he sees in airports

Good security tooling rarely replaces skilled engineers

Black boxes are rarely useful

Excepfions: spam filters, DDoS protection via your CDN
Not an exception: Antivirus systems

Favor systems that work like the internet, and that get integrated
INfo your engineering processes

Product Security

You get to design your atfacker’s motivation level and the
oroblems they have 1o solve

Spend as much fime designing unhappy paths as happy ones

Know where each automated pusiness or security decision in your
flows

Document this efore each sprint and check it affer

f your product means you have fo deal with non-credit card
fraud, that's a core competency

YOou are responsible for the impact of your work
on people’s lives.

PersonNas 1O cxaminea

A domestic violence victim seeking an abortion
A trans feen Not out ar nome

A UNIonN organizer

Startup looking o get
serous about security?

Let's talk.

ello@structures.systems

@ Eleanor Saitta
Systems Structure Lid.

.. a
;.'fjgfr,

	Security from Zero
	Part One: Thinking
	What is a System?
	Properties you care about:
	What is Security?
	What is Resilience?
	Designing for Resilient Security
	Component Principles
	State and Logic
	Immutability and Ephemerality
	Minimal, Canonical State
	Mitigations Always Fail
	Kill Bug Classes
	Segment All The Things!
	Process Principles
	Declare, don’t Program
	Compromise is Inevitable
	Design for Failure
	Design for Human Error
	Design for Human Error
	Decentralize Decisionmaking
	Slack
	Part Two: Doing
	Scope
	When to Start
	When to Start
	Seven Immediate Actions
	Governance
	Getting Work Done
	Productive Team Relationships
	Slide Number 31
	Compliance
	Slide Number 33
	Risk is a Lie
	Risk is a Lie
	Detection
	Capability is a Liability
	Code is Not an Asset
	The Front End
	The Supply Chain
	Audits
	Solutions to Avoid
	Solutions to Avoid
	Product Security
	Slide Number 45
	Personas to Examine
	Slide Number 47

